Mon - Thur 7.30-15.30   Fri 7.30-14.00

How Do I Measure Conformal Coating Thickness?


There are several ways to measure the conformal coating thickness on a printed circuit board (PCB).Β  They can be either used on dry or wet film coating.

These techniques include:

  • Non-destructive eddy current system
  • Micrometer screw gauge
  • Wet film gauge

These techniques are explored further below. Alternatively, click through to our article Conformal Coating Thickness Measurement: Wet, Dry & Optical Methods to get a more detailed review.


Non-destructive eddy current system

A fast method for measure coating thickness is a system using eddy currents. The process can be extremely quick and accurate to Β±1 um.

Using a gauge and flying probe for the measurement the system is extremely easy to use. The process works by placing the test probe head flat on the surface of the conformal coating and the measurement is almost instantaneous. The system provides an immediate repeatable result for thickness measurement of conformal coating.

Using a test probe system like the Positector 6000 can quickly give you conformal coating thickness measurements without damaging the circuit board.
Using a test probe system like the Positector 6000 can quickly give you conformal coating thickness measurements without damaging the circuit board.

Test coupons are the ideal method for measuring the coating thickness, whether is it spraying or dipping, and can be kept as a physical record of the performance.

Apply the coating to the test coupons at the same time as the circuit board then provides a permanent measurement and an accurate guide to the coating thickness.

There are a couple of issues using a system like this.

First, there needs to be metal in the circuit board directly below the tested point. Otherwise, the system cannot work.

Second, there needs to be a flat area large enough for the test probe. The smallest practical probe is approximately 6mm diameter so any area smaller than this is not practical.

Finally, the surface measured for the probe needs to be flat. If not then there will be errors in the measurement.


Micrometer screw gauge

The low cost method is using a calibrated micrometer screw gauge that can measure down to Β± 10 um. First measure a point on the board or test coupon, apply the coating, cure and measure the test coupon again at the same point. The difference gives you the coating thickness.

A couple of pitfalls to avoid are ensuring the coating is cured hard enough since if it is soft it could compact and give a false reading. Also, do not measure one point. Take an average of at least 3 or 4 points since this will give a better result statistically.

Test coupons are the ideal method for measuring the coating thickness, whether is it spraying or dipping, and can be kept as a physical record of the performance.


Wet film gauge

A final method is a wet film measurement technique that is very cost effective.

The technique uses a comb with different size patterns that is placed in the wet coating and the imprint left indicates the wet film thickness. Knowing the solids content of the material means that the material thickness can be calculated.

A wet film gauge is a low cost method for measuring coating thickness while the conformal coating is wet. Using the solids content in the material and the wet film thickness allows the dry film thickness to be estimated.
A wet film gauge is a low cost method for measuring coating thickness while the conformal coating is wet. Using the solids content in the material and the wet film thickness allows the dry film thickness to be estimated.

Need to know more about conformal coating thickness measurement?

Find out more from our article Conformal Coating Thickness Measurement: Wet, Dry & Optical Methods to get a more detailed review.

Or, contact us now and we can discuss how we can help you. Give us a call at (+44) 1226 249019 or email your inquiries at sales@schservices.com

 

 

Is There a Free Guide on Conformal Coating Defects?


Collage of conformal coating capillary flow and wicking defects around PCB components.

SCH services Ltd provide an information section on conformal coating defects in their Defects Knowledge Hub.

This hub explains the most common defects and failure mechanisms, their root causes, and practical actions to prevent or correct them in production.

Conformal coating defects can undermine PCB protection, reduce insulation resistance, and cause costly rework or field failures. This hub explains the most common defects like de-wetting, de-lamination, corrosion and cob-webbing and details their causes and how to prevent them.

All this is linked to detailed technical articles and inspection guidance.


Need to know more about coating defects?

Contact us now and we can discuss how we can help you. Or, give us a call at (+44) 1226 249019 or email your inquiries at sales@schservices.com

 

Why Does Cleaning Improve the Adhesion of a Conformal Coating?


In general it is important that conformal coatings have good adhesion in order to be effective. However, there is no single theory that describes the property of adhesion for conformal coatings.

There are three basic mechanisms for conformal coatings that are known to help with good adhesion. They are:

  1. Adsorption
  2. Chemical Bonding
  3. Mechanical Interlocking
There are three basic mechanisms for conformal coatings that are known to help with good adhesion. They are adsorption, chemical bonding and mechanical Interlocking
There are three basic mechanisms for conformal coatings that are known to help with good adhesion. They are adsorption, chemical bonding and mechanical Interlocking

Adsorption

This is where the molecules in the conformal coating wet or flow freely over the substrate and make intimate contact with the substrate. This forms interfacial (electrostatic) bonds with van-der-Waal forces.

Any contamination between the two will weaken the adsorption. Any de-wetting (prevention of wetting) will also hinder the adsorption.

Cleaning the surface of contamination will help with adsorption.

Chemical bonds

The bonds are formed at the interface between the conformal coating and the substrate.

Good bonding gives strong adhesion of the conformal coating to the substrate. If bonding cannot be achieved due to contamination then poor adhesion may result.

Cleaning the surface of contamination will help the chemical bonding process.

Mechanical interlocking

The conformal coating film penetrates the roughness on the substrate surface and is achieved once the coating dries.

If the surface is smooth then the mechanical bonding is less effective. If the surface can be cleaned, leaving a rough surface, then more effective bonding can be achieved.

Cleaning the surface of contamination will help.


Achieving the best conformal coating adhesion

Surface contamination can be critical when considering conformal coating and the process. If you can clean the contamination from the surface then the adhesion should improve.

All three mechanisms do not have to occur to form good adhesion. Depending on the specific conformal coating system, substrate, and application method, different mechanisms could work. However, good wetting or adsorption is normally required for good bonding.

So, if in doubt clean the surface of the substrate to achieve good conformal coating bonding.


Need to know more about conformal coating adhesion?

Effective surface preparation and cleanliness are critical for conformal coating reliability. Contaminants such as flux residues, oils, and ionic salts can cause adhesion loss, corrosion, or electrical leakage.

To find out more read our guide, Surface Preparation & Cleanliness for Reliable Conformal Coating, which covers cleaning methods, cleanliness testing, adhesion promoters, and industry standards.

Contact us now and we can discuss how we can help you. Or, give us a call at (+44) 1226 249019 or email your inquiries at sales@schservices.com

Are there design rules for applying conformal coatings?


Conformal coating is not simply a consumable material. Unfortunately, for too many designers, conformal coating is simply a part number, to be applied to circuit boards. However, this can be a major problem especially in the conformal coating production stage of the process.

There are guidelines in the IPC standards that may help with Design for Manufacture (DFM) principles. These are worth considering. Unfortunately, there are no official design guidelines that will help directly with the application process and conformal coating.

Conformal coating treated as a part number rather than a design consideration can cause production issues

When conformal coating is treated as a simple part number rather than a design consideration, it can create significant problems during the production stage.

Conformal Coating Design Hub

SCH Services Ltd has developed design rules for conformal coating in their Design Hub to help users get the fundamentals right.

The hub focuses on designing PCBs and assemblies for coating, including keep-out zones, component spacing, creepage and clearance, and applying DfM/DfCC principles before manufacture. The philosophy is that for companies embracing lean philosophies and applying conformal coatings, a failure to appreciate the subtleties of the application process can result in an un-coatable (at least as specified) assembly process.

The problem is if the rules are not followed, the resultant circuit board design can challenge even the most sophisticated conformal coating system and its operator to achieve the finish desired.

For further information visit conformal coating design rules to learn more.


Need Process Support?

Optimising electronics coating methods requires the right combination of materials, equipment, and operator training. Partner with SCH Services for:

Infographic explaining whether MIL-SPEC qualification is required for conformal coating and how legacy MIL-I-46058C references relate to modern standards.

Do you need MiL spec qualification for your conformal coating?


A common question from aerospace and defence customers is: β€œDo we need MIL-SPEC qualification for our conformal coating?”

The short answer is: sometimes β€” but only when it is contractually required.

Confusion usually arises because legacy military standards are still referenced on drawings, purchase orders, or coating datasheets, even though the underlying standards landscape has changed.

For a full explanation of how military (MIL) requirements relate to modern conformal coating standards, see: MIL-I-46058C (Cancelled) & MIL Standards for Conformal Coating
.


When is MIL-SPEC actually required?

In practice, manufacturers usually know they require MIL-related compliance when:

  • The product is for a military or defence programme
  • MIL requirements are explicitly called up on the customer drawing
  • The purchase order or contract includes MIL flow-down requirements

If none of these are present, β€œMIL-SPEC” is often being used as shorthand for high reliability rather than a defined manufacturing requirement. This is where misunderstandings commonly occur.


Be cautious with datasheets claiming β€œmeets MIL-I-46058C”

Many conformal coating datasheets state that the material β€œmeets the requirements of MIL-I-46058C”. This wording should be treated with caution.

MIL-I-46058C is a cancelled standard, and simply stating compliance does not mean the coating has been independently approved or qualified. In many cases, the claim refers only to internal or historical test data.

Where defence programmes genuinely require MIL-style material qualification, customers will often expect evidence beyond a datasheet statement.


What is the Qualified Product List (QPL)?

Historically, conformal coatings tested against MIL-I-46058C were listed on the Qualified Product List (QPL).

The MIL-I-46058C Conformal coating standard has been inactive for new designs since the late 1990s, but QPL listings are still referenced in legacy documentation and long-lifecycle programmes.

Coatings appearing on the QPL would have undergone independent third-party testing rather than self-certification. This is an important distinction.

However, the presence (or absence) of a coating on the QPL does not automatically determine its suitability for modern programmes. What matters today is how customer requirements are defined and verified.


What is normally used instead today?

Modern defence and aerospace programmes typically rely on a combination of:

  • IPC-CC-830 for conformal coating material performance and qualification
  • IPC-A-610 for workmanship and acceptance criteria
  • Customer drawings and specifications defining coverage, keep-out zones and inspection evidence

MIL requirements are therefore usually met through industry standards plus contractual flow-downs, rather than through a single active β€œMIL-SPEC” document.


Need to understand how the standards fit together?

The Conformal Coating Standards Hub brings together SCH’s guidance on IPC-A-610, IPC-CC-830, IEC 60664, UL 746, NASA workmanship standards and how they relate to conformal coating and Parylene.

It is designed to help engineering, quality and procurement teams understand:

  • What each standard actually covers
  • How acceptance, material qualification and inspection requirements interact
  • Where legacy MIL references still appear β€” and how to interpret them safely

You can also explore related hubs covering Design, Inspection & Quality and Parylene Coating.


If you need help interpreting customer requirements, legacy MIL references, or selecting compliant coating materials and inspection criteria, contact SCH Services.

πŸ“ž Call: +44 (0)1226 249019 Β | βœ‰ Email: sales@schservices.com

What is Plasma Cleaning?


Plasma cleaning is a process of using plasma energy to clean and modify the surface of a substrate like a circuit board assembly. It is a highly effective surface cleaning and treatment process before application of conformal coatings and Parylene and is gaining more popularity due its highly effective performance.

Plasma cleaning is a process of using plasma energy to clean and modify the surface of a substrate like a circuit board assembly. It is a highly effective surface cleaning and treatment process before application of conformal coatings and Parylene.
Plasma cleaning is a process of using plasma energy to clean and modify the surface of a substrate like a circuit board assembly. It is a highly effective surface cleaning and treatment process before application of conformal coatings and Parylene.

What is Plasma?

Plasma is the energy-rich gas state (also known as the fourth state of matter) that can be used to modify the surface of a product to improve its performance.

Plasma technology is based on a simple physical principle. Matter changes its state when energy is supplied to it. Solids become liquid. Liquids become gas. If additional energy is then fed into a gas by means of electrical discharge it eventually ionises and goes into the energy-rich plasma state, plasma is created.

This modification can be improving the adhesion of a conformal coating or change the surface characteristics of the board.


How is Plasma used for improving the performance of coatings with printed circuit boards?

For electronic circuit surfaces, plasma treatment can be used in two highly effective ways.

That is it can:

  • Clean the surface of the circuit board. The surface will be free of residues and 100% contamination free including release agents and additives.
  • Activate the surface of the circuit board assembly. This will allow easier bonding and better adhesion of conformal coatings and Parylene.

These properties make it an interesting technique for improving the surface performance of an electronic circuit board.

In fact, plasma treatment can clean, activate or coat nearly all surfaces. These surfaces include plastics, metals, (e.g., aluminum), glass, recycled materials and composite materials. This means the plasma process can be highly effective on many different products.


How is the plasma applied to a circuit board to clean and activate the surface?

For materials like liquid conformal coatings and Parylene then atmospheric pressure plasma is an excellent process for cleaning surfaces and improving adhesion and surface energy performance of circuit boards.

Atmospheric plasma is generated under normal pressure. This means that low-pressure chambers are not required. The plasma is created with clean and dry compressed air and does not require forming gases. It is possible to integrate plasma directly into manufacturing processes under normal pressure conditions.

Typical plasma components used for cleaning surfaces on circuits are:

  • Plasma jets (nozzles) to apply the plasma to the surface of the circuit board. They could be controlled by a robotic system.
  • The plasma generators that create the plasma to clean or supply the coatings as required. They provide output power and, in conjunction with complete pretreatment stations, assume various control functions.
  • The process monitoring that controls the nozzles, the movement of the system and the quality of the output.

These three parts form the plasma cleaning process.


Want to know more about plasma cleaning and conformal coating performance?

Contact us now to discuss what we can do to help. Or, give us a call at (+44) 1226 249019 or email your inquiries at sales@schservices.com

How to clean “no clean” flux residues and get it right


Cleaning the residues left behind by a no clean flux process is one of the most difficult tasks when considering cleaning. After all, the residues left on the circuit board are not formulated to be cleaned away easily.

How do you clean “no clean” flux residues if you need to?

Whether a flux residue can be cleaned effectively depends on the cleaning materials saponification factor and its compatibility with the residues.

Saponification is the ability of the no clean residues to be softened to the point of being able to be dissolved by the alkali content (the saponifier) of the cleaning chemistry. The higher the saponification factor of the cleaning fluid the easier it is to clean the residues.

So the key here is to ensure that the saponifier completely dissolves the residues.

What happens if the residues are only partially dissolved?

A no-clean residue that is only partly cleaned away may be far worse for a printed circuit board assembly (PCBA) than a no-clean residue left untouched. One of the reasons is because lead free flux activators are more active than those in earlier leaded flux formulations.

In a no clean flux, when un-cleaned, the residues are locked up in the carrier resin matrix. They are stable (benign) at normal operational temperatures and therefore will not leach out dangerous residues and cause corrosion problems. However, if the protective matrix around the residue is partially removed by an inadequate cleaning regime, then the activators could be exposed.

This may lead to a corrosion process starting on the circuit board. Further, this process could be accelerated in the presence of heat, power on the boards in service or high relative humidity.


So how do you clean β€œno-clean” residues?

It is important when considering cleaning β€œno-clean” residues on a circuit board that you consider three points:

  1. Can you actually clean the residue to be cleaned effectively?
  2. Have you matched the cleaning chemistry with the relative degree of difficulty and the available process?
  3. Have you validated the whole process by careful testing?

Consider these three points and it may help you be successful. Not considering these three points could easily lead you to having real problems in the long term.


Want to know more about cleaning no clean fluxes or cleaning circuit boards?

Contact us now to discuss what we can help you with your cleaning issues. Β Or, give us a call at (+44) 1226 249019 or email your inquiries at sales@schservices.com

FAQs Atomic Layer Deposition (ALD)


Atomic Layer Deposition (ALD) is an advanced thin-film coating technology used where extreme thickness control, conformality, and film integrity are required at the nanometre scale. It is increasingly specified for high-reliability electronics, semiconductor devices, optics, energy systems, and biomedical components where conventional coating methods reach their technical limits.

Unlike liquid-applied coatings or conventional vapour deposition processes, ALD builds coatings one atomic layer at a time through a self-limiting surface reaction. This allows engineers to precisely define film thickness, composition, and uniformityβ€”even on complex 3D structures, high-aspect-ratio features, and densely packed devices.

The Atomic Layer Deposition FAQs below provide a practical overview of:

  • What ALD is and how it differs from other CVD-based coating processes
  • The types of materials that can be deposited using ALD
  • How the ALD process works in practice
  • Where ALD is typically used across different industries
  • The key advantages and limitations of ALD compared with alternative coating technologies

This section is intended to give engineers, designers, and procurement teams a clear understanding of when ALD is technically justified and how it fits alongside other advanced coating solutions such as Parylene and liquid conformal coatings.

What is ALD?

Atomic Layer Deposition (ALD) belongs to the family of Chemical Vapour Deposition methods (CVD).

  • It is a deposition process at a nano-scale level within an enclosed vacuum chamber.
  • The deposition process forms ultra-thin films (atomic layers) with extremely reliable film thickness control.
  • This provides for highly conformal and dense films at extremely thin layers (1-100nm).

What coatings are deposited in ALD?

ALD principally deposits metal oxide ceramic films. These films range in composition from the most basic and widely used aluminum oxide (Al2O3) and titanium oxide (TiO2) up to mixed metal oxide multilayered or doped systems.

How does ALD work in practice?

The ALD deposition technique is based upon the sequential use of a gas phase chemical process.

  • Gases are used to grow the films onto the substrate within a vacuum chamber.
  • The majority of ALD reactions use two chemicals called precursors.
  • These precursors react with the surface of a material one at a time in a sequential, self-limiting, manner.
  • Through the repeated exposure to alternating gases there is a build up of a thin coating film.

Where is ALD used?

ALD is used in many different areas including:

  • Micro-electronics
  • Semiconductors
  • Photovoltaics
  • Biotechnology
  • biomedical
  • LEDs
  • Optics
  • Fuel cell systems

What are the Advantages and disadvantages of ALD

Advantages

  • Self-Limiting. The ALD process limits the film thickness. Many other processes like Parylene are dependent upon amount of dimer and will continue to deposit successive polymer layers until it is completely used up.
  • Conformal films. ALD film thickness can be uniform from end to end throughout the chamber. Other coatings like Parylene can have a varied coating thickness across the chamber and the devices being coated.
  • Pinhole free. ALD films can be pinhole-free at a sub-nanometer thickness. Parylene and some other materials are only pinhole-free at micron levels.
  • ALD allows layers or laminates. Most other films including Parylene are single component layers.

Disadvantages

  • High purity substrate. This is very important to the quality of the finish similar to many other vapour deposition processes.
  • ALD Systems can range anywhere from $200,000 to $800,000 based on the quality and efficiency of the instrument. This tends to be 3-4 times the prices of a Parylene system.
  • Reaction time. Traditionally, the process of ALD is very slow and this is known to be its major limitation.
  • Masking challenges. The ALD masking process must be perfect. Any pinhole in the masking process will allow deposition beyond the masking barrier.

What are some of the ALD coatings that can be deposited?

A wide variety of chemistries are possible with Atomic Layer Deposition. They include oxides, nitrides, metals, carbides and sulfides.

Want to know more about Atomic Layer Deposition (ALD) coatings?

Contact us now, call us on +44 (0) 1226 249019 or email your requirements on sales@schservices.com

Introducing a new coating that could offer the ultimate protection for LEDs without compromise to performance or process cost


The need to protect LEDs from the long –term exposure of a harsh environment is becoming more and more required. This is doubly so for LEDs used outdoors.

The alternative coatings used to protect LEDs are many. They include Parylene, conformal coatings, ultra-thin fluoropolymer materials and encapsulates. Β However, none of the material processes offer the perfect protection without adding significant cost to the production process, and ultimately the circuit board and product.

Further, to reduce costs in production some of the coating materials used compromised performance. So, there is a typical balance of costs versus protection. Now, this may all change with the introduction of a very new coating process that takes many of the performance benefits of the best coatings but does not suffer the associated problems of increased production costs.

This process is a hybrid ALD (Atomic Layer Deposition)/CVD (Chemical Vapor Deposition) technique.


So what is a Hybrid ALD / CVD technique?

Most people in conformal coating have heard of Parylene. Parylene is a CVD (chemical vapor deposition) process where the Parylene material is applied in a vacuum chamber and the coating builds up on the surface of the circuit.

The new hybrid process uses CVD as one of its film processes. However, how it differs is that the method also uses another technique, ALD (atomic layer deposition). Β Further, these two processes, ALD and CVD are applied sequentially. They are deposited as ultra-thin coatings (nanometer scale thickness) one on top of the other.

This build up of multiple layers of ultra-thin coatings (alternating ALD and CVD films) with differing coating properties produces a completely different hybrid coating that outperforms the individual coatings produced by ALD and CVD alone.

Further, the final layer applied is a hydrophobic barrier that further enhances the performance of the coating.


So how does the hybrid film differ to traditional materials like Parylene and liquid conformal coatings for protecting LEDs?

First, the hybrid coatings protective performance has been found to be superior to them all in most categories of testing so far. It provides both improved electrical and physical properties that protect the circuits.

A major issue for LEDs is light loss when the film is applied over the LEDs. For the hybrid coating the coating shows zero loss of light and this is a great advantage. Also, the material is both temperature and UV stable. The coating will survive up to 350C and does not degrade in UV light. Again, these are great advantages for the performance of the hybrid coating.

It is also hydrophobic. This property rejects water from the surface and improves the film properties enormously.

However, what makes this coating exceptional is its final property. That is the coating does not require the circuit board to be masked when the coating is being applied!


So, why does the hybrid film not need masking like other traditional conformal coatings and Parylene?

The difference is film thickness. Β The hybrid film is much thinner than the other traditional coatings including Parylene. Typical film thicknesses can be as low as 0.1um.

Since the coating is extremely thin (<< less than traditional coatings) then it has been found that no masking is required. Β This is because when components like connectors are joined together then the ultrathin coating does not prevent electrical connection. The component mating parts connect together and no loss of connection can be measured.

Even better, the physical protection of the film is not compromised. In fact, all of the components including connectors are protected. This means that the cost of process is purely the cost of application of the material and nothing else.

Since the process is relatively low cost then this does offer a very interesting alternative to the traditional coating materials in LED processing.


Doesn’t the hybrid ALD / CVD process sound complex to operate?

Actually, although the technology and chemistry can be a little complex the process itself is fairly simple.

Once the process is set up in the machine the operator just loads, switches the machine on, waits for the coating to be applied and unloads on completion. Β 

This is a far cry from the sophisticated processes of robotic selective coating or the challenges of Parylene. Further, the application process is actually very stable and in reality is tried and test in other industries for a long time.


So, how well did the hybrid coating perform in protecting the LEDs?

SCH worked with live LED circuits from a customer and tested the hybrid ALD / CVD material.

The customer LED product was an outdoor application. The LED customer used their own in-house test methods to prove the technology. Β As part of the testing the LED circuit was exposed to tests for resistance against salt, moisture and temperature.

The test methods included:

  • Initial test submerged in DI water dip for 12 hours
  • Second test submerged in 25% concentration saltwater dip for 17 hours
  • Third test 2 x 6 hour cycles in water ramped from room temperature to 70Β°C

After each test the boards were tested for failure or problems.

The LED circuit passed on all tests. All results achieved were completed with no masking of components and zero light loss in LED opacity. The electrical connections were found to be excellent and the coating did not affect the integrity of the connectors.


So what about the cost of process?

Since the hybrid film process is masking and de-masking free then the cost per unit is incredibly low. This makes the material superior to nearly all the traditional methods of coating protection. Β Further, the protective properties of the hybrid coating in nearly all cases is superior to the conventional methods.

So, you get a lower cost coating with a higher technical performance.


So, just how good is the hybrid ALD / CVD coating as a protective material for electronics?

Generally, with protective coatings for electronics then Parylene is considered the gold standard in most cases. Β So, SCH compared Parylene with the hybrid ALD / CVD material.

Property Parylene ALD/CVD Coating
Hardness Soft Hard
Wear resistance/Handling Ease Poor Excellent
Water Vapor Transmission Rate Good Excellent
Temperature Resistance (extended time) 100Β°C 350Β°C
Color Gray/white Clear
Adhesion to various materials Poor Excellent
Scalable to large production Poor Excellent
Process Time 8 – 12 hrs 8 – 12 hrs
Hydrophobicity Good Good – Excellent
Cost High Low – Med

What SCH also identified for the material were some key properties for LEDs.

  • The Water Vapor Transmission Rate (WVTR) is superior to Parylene so the coating is far more waterproof for the LEDs
  • Coating adhesion is superior as it covalently bonds to the substrate. So, the lifetime of the material will be better on the circuit.
  • The hybrid coating is UV stable whereas Parylene in general is not. This is an important criteria for coatings exposed outside on LEDs
  • The coating stayed 100% transparent during testing (no loss of lux). That again is important for LEDs.
  • The coating thickness of the hybrid material is x10 LESS than the Parylene. This aids light transmission and electric connectivity
  • The film is hydrophobic so repels water and aids the performance of the coating.

So, in reality the hybrid ALD / CVD material could just be what the LED industry is looking for in protecting their circuits.


Need to find out more?

For further information on the hybrid ALD / CVD materials thenΒ contact us directly. Β Call us on +44 (0) 1226 249019, email your requirements on sales@schservices.com

What are conformal coating masking boots and how can they save you money?


The use of masking materials such as tapes, dots and liquid latex can be a highly effective process in protecting components from ingress of conformal coating. However, the masking process can be labour intensive, difficult and time consuming.

Using reusable, custom masking boots offers a labour saving alternative in both the masking and de-masking stages of the coating process. This can save you lots of time and money.

Conformal coating masking boots used on Printed circuit board as an alternative to masking tapes

Three simple reasons why conformal coating masking boots can save you money

  • Masking time is reduced. Using masking boots as an alternative can be 4-5 times quicker than masking tape.
  • De-masking time is reduced. Again it is much quicker to remove masking boots than tape
  • Masking boots don’t leak as easily as tape. So there is less chance of a need to repair or remove leaked coating.

This means you can save a lot of money very quickly when switching to custom masking boots.


How Diamond MT saved nearly 60% of their process time switching to masking boots

Diamond MT, a conformal coating and Parylene coating service provider, found they saved 60% of their current costs by switching to the SCH range of conformal coating masking boots.

Sean Horn, Diamond MT, explains how they did it.

β€œWe had initially wanted to try SCH’s conformal coating masking boots for price savings. However, once we began to work with Lee on our specific masking application, we realised that we could extend the life of our boots over 200%. We switched immediately!

We then realised the importance of working with someone who understands conformal coatings. We will not being going back to our previous supplier.”

Sean Horn, Director, Diamond MT, Parylene and conformal coating subcontract service provider.


Request Your Free Masking Sample Pack

You can experience the quality of our masking solutions first-hand by requesting a free sample pack. The pack includes a selection of our masking tapes, dots, boots and pre-cut shapes, allowing you to test their performance directly in your coating process. It’s a quick and risk-free way to see how our materials ensure clean removal, precise coverage, and time-saving application.

πŸ‘‰ Contact us today to request your free sample pack and find the right masking solution for your production needs.


Find out how much you can save by switching to custom boots

We are happy to provide a quotation for our masking boots so you can see for yourself how much you can save.

Just provide us with three pieces of information:

  • Provide a picture of the board you wish to test
  • Identify the components you need to mask
  • Provide the component identification codes (manufacture details etc)

Contact us today to request your quotation for conformal coating masking boots. Call us on +44 (0) 1226 249019, email your requirements on sales@schservices.com

0
  • Your current order total is £0.00 β€” you must have an order with a minimum of £75.00 to place your order.
0
Your Cart
Your cart is empty
  • Your current order total is £0.00 β€” you must have an order with a minimum of £75.00 to place your order.
Calculate Shipping
  • Your current order total is £0.00 β€” you must have an order with a minimum of £75.00 to place your order.

Conformal Coating UK

Technical banner showing PCB and process icons representing conformal coating, masking, inspection and training on the SCH technical knowledge hub.
Conformal Coating UK
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.