Mon - Thur 7.30-15.30   Fri 7.30-14.00

How do conformal coating masking boots save money in your production process?


Three ways reusable PCB masking solutions reduce coating costs

Reusable masking solutions protecting PCB components during conformal coating at SCH Services

Switching from disposable tapes to reusable masking solutions can cut conformal coating costs by up to 80%, particularly in medium- to high-volume production.

    1. Faster application. Pre-formed boots are typically 4–5Γ— quicker to apply than manual tape masking,
      reducing operator time per board.
    2. Rapid removal after coating. One-piece removal eliminates the slow peeling, residue cleanup, and inspection
      associated with traditional masking materials.
    3. Lower rework risk. Unlike tape, moulded boots provide consistent sealing around connectors and interfaces,
      reducing coating ingress and costly touch-up or strip-and-recoat cycles.

The result is a more predictable masking process, improved yield, and faster throughputβ€”especially where repeatability matters.

Get expert advice on reusable masking for conformal coating

SCH helps manufacturers select and implement reusable masking boots and component protection solutions that reduce labour, improve consistency, and support scalable production.

You can explore our range of reusable PCB masking boots, or review our technical guidance on conformal coating masking strategies, which explains when to use boots, tapes, dots, liquid mask, or custom plugsβ€”along with best practice,
standards considerations, and common failure modes.

This approach helps ensure your coating operation remains efficient, repeatable, and rework-friendly as volumes increase.
Contact us to discuss your application β†’

Are there Design Rules for conformal coating dipping?


PCB design rules for dip-applied conformal coating, showing component placement and coating flow behaviour

Applying clear design guidelines for dip-applied conformal coating can dramatically simplify the coating process, reduce defects, and prevent costly production delays.

When boards are designed specifically with immersion coating behaviour in mind, manufacturers benefit from more consistent coverage, easier masking, and far fewer downstream issues on the production line.

Key design rules for dip-applied conformal coating

When designing printed circuit boards for dip conformal coating, attention to layout, handling, drainage, and fixture interaction is critical. The following practical guidelines should be considered at both the PCB and tooling design stage:

  • Group masked components at one end of the PCB. Place connectors and keep-out features so the board can be dipped to a controlled depth without coating sensitive areas.
  • Define secure handling points. Ensure the PCB can be reliably held or fixtured without contacting coated or functional areas.
  • Prevent fixture contamination. Fixtures should avoid entering the coating bath and must not accumulate coating over repeated cycles.
  • Match coating chemistry to the dip process. Confirm viscosity, cure mechanism, and material compatibility are suitable for immersion coating.
  • Design for controlled drainage. Allow the board to drain toward a defined edge or corner to minimise pooling and excessive thickness build-up.
  • Avoid components that trap coating. Select components and orientations that allow coating to drain freely during withdrawal.
  • Choose masking-friendly components. Where masking is required, use connectors and parts that can be easily protected using boots, caps, or standard masking solutions.

For a deeper technical discussion – including designing PCBs and assemblies for coating, including keep-out zones, component spacing, creepage and clearance, and applying DfM/DfCC principles before manufacture go to our conformal coating design hub.

Why use conformal coating design rules?

Well-defined design rules for conformal coating significantly reduce cost, process risk, and production disruption while improving coating quality and long-term reliability.

Although many principles apply across all coating technologies, each application method introduces process-specific design constraints that must be addressed early in the design stage.

  • General design fundamentals – geometry, drainage paths, handling points, and coating access
  • Selective robotic coating – valve access, shadowing, programming tolerances, and keep-out definition
  • Dip coating – orientation, drainage control, fixture interaction, and thickness build-up
  • Batch spray coating – coverage consistency, overlap zones, and edge definition
  • Parylene coating – vapour access, clearances, masking strategy, and material compatibility

Many of these rules overlap across processes, while others are highly application-specific. Understanding where design decisions influence coating behaviour helps engineers avoid rework, reduce masking complexity, and ensure the selected coating process is robust, repeatable, and scalable.

Why conformal coating problems often start at the design stage

Most manufacturers have successfully adopted Design for Manufacture (DFM) principles, improving communication between design teams and production to reduce avoidable challenges.

However, conformal coating is frequently treated as a simple material selection rather than a process-dependent manufacturing operation. Too often, coating is reduced to a part number applied late in the design cycle.

For organisations applying lean manufacturing principles, this lack of early consideration can result in assemblies that are difficultβ€”or impossibleβ€”to coat as specified, regardless of equipment capability.

Fortunately, conformal coating design rules are straightforward. When applied early, they save both time and money. When ignored, even the most advanced coating systems can struggle to achieve the required finish.

In nearly all cases, these β€œnightmare” production scenarios could have been avoided during the design review or prototyping stage.

Get expert help selecting the right conformal coating process

If you are evaluating conformal coating methods or experiencing application challenges, SCH can help review your design and recommend the most suitable coating process, equipment, and masking strategy.

Contact us to discuss your application β†’

What Application Methods Are Used for Conformal Coating?


Conformal coatings can be applied to printed circuit boards (PCB) in the production process environment in many alternative ways. Listed below are the common methods of applying the conformal coating materials:

  • Brushing
  • Aerosol spray
  • Batch spray
  • Selective spray
  • Dipping
  • Vapour deposition
There are many different methods of applying conformal coatings including brushing, aerosol spray, batch spray, selective spray, dipping and vapour deposition (Parylene).

Common methods of applying conformal coatings include brushing, aerosol spray, batch spray, selective spray, dipping and vapour deposition (Parylene).

It is possible to split the different application methods and their suitability in many different ways including:

  • Compatibility with the conformal coating material
  • Design of the circuit board
  • Suitability to low, medium and high volume
  • Manual versus automatic process
  • Type of method of application
  • Level of control required

Each of the various methods has different advantages and disadvantages and should be carefully considered.

This thought process relates to the holistic approach to conformal coating processing that states that you should consider the conformal coating material, the application process and the circuit board together and not as three separate entities.


Find out how we can help you with your conformal coating application selection now.

Partnering with SCH Services means more than just outsourcing β€” you gain a complete, integrated platform for Conformal Coating, Parylene & ProShieldESD Solutions, alongside equipment, materials and training, all backed by decades of hands-on expertise.

  • ✈️ 25+ Years of Expertise – Specialists in coating technologies trusted worldwide.
  • πŸ› οΈ End-to-End Support – Coating selection, masking, inspection and process validation.
  • πŸ“ˆ Scalable Solutions – From prototypes and NPI through to high-volume production.
  • 🌍 Global Reach – Responsive support across Europe, North America and Asia.
  • βœ… Proven Reliability – Built on quality, consistency and long-term customer partnerships.

πŸ“ž Call: +44 (0)1226 249019
βœ‰ Email: sales@schservices.com
πŸ’¬ Contact Us β€Ί

 

The ABCs of ultra-thin fluoropolymer coatings for electronic circuit boards


 

Nano coatings are no mask conformal coatings with great water repellent properties

What is a fluoropolymer coating?

A fluoropolymer coating is typically comprised of fluorocarbons and characterised by carbon-fluorine bonds.

They have many interesting properties and especially for printed circuit boards. However the three key properties for electronics are that the coatings are:

  • Hydrophobic
  • Chemically resistant
  • No masking required

These properties can be key to protecting the electronics and providing a highly cost effective production process.

Hydrophobic coating

  • Fluorocarbons are not susceptible to Van der Waals force.
  • This gives the coatings their signature characteristics. That is they are non-stick, hydrophobic and friction reducing.
  • Therefore, water does not like to wet the surface of the circuit board and this gives the circuit excellent protection.

Chemically Resistant

  • These fluorinated coatings are chemically inert.
  • Owing to the fluorine bonds, fluoropolymer coatings demonstrate a high level of durability as well as resistance to acids, bases and most solvents.
  • This gives the circuit board a high degree of protection from chemical attack.

No masking required

Finally, what is really interesting is that these properties are exhibited at ultra-thin film thicknesses. Typically a dry film can be 1-2um or even less.

This means that masking generally is not required for circuit boards before application. Β Therefore, you can dip the whole product into the liquid and there is no issue with electrical contact. This can lead to significant cost savings in production.

Find out more about our range of fluoropolymer nano coatings here.


What other properties do the fluoropolymer coatings have that may be relevant in electronics?

SCHUK 2

As already mentioned these hydrophobic coatings have very specialised properties.

They can include:

  • Being highly hydrophobic (water repellent)
  • Having a high moisture barrier
  • Requiring no masking before application
  • Being highly oleophobic (oil repellent)
  • Having a high chemical resistance
  • Having a high lubricity
  • Having high dielectric properties
  • Providing high corrosion resistance
  • Providing good abrasion / wear resistance

Note, not all fluoropolymer coatings have all of the above properties. But, some coatings can in fact have almost all of the properties.

The fluoropolymer coatings are extremely flexible coatings and becoming more prolifically used throughout engineering.


What sectors of industry are fluoropolymer coatings being used in protecting electronics?

SCHUK3

Fluorinated coatings are used to protect electronics in almost all industrial sectors.

They include:

  • Aviation
  • Aerospace
  • Defence
  • Automotive
  • Industrial
  • Oil & Gas
  • LEDs
  • Medical
  • Optics
  • Telecommunications
  • White goods / Commercial

This list is limited and there are a lot more areas that they are used.


What are the major differences between a fluoropolymer coating and a conformal coating for protecting an electronic printed circuit board or assembly?

There are several key differences between a conformal coating and a fluoropolymer coating.

They include:

  • Hydrophobic Properties – A fluoropolymer coating is generally hydrophobic in nature. It repels water when the water is on the surface of the coating.
  • Extremely thin coating – The fluoropolymer coating is normally applied a lot thinner than a typical liquid conformal coating. This is due to its superior performance when repels liquids
  • No masking – Due to the extremely thin fluoropolymer coating applied (<1-2um), the components that normally require protecting (connectors, switches etc) from the insulating liquid conformal coating may not need to be masked for the fluoropolymer. The circuit board can be completely submerged in the liquid with no masking applied without fear of damaging the connections.
  • Simple process – No masking means an extremely fast application process
  • Fast drying – due to the thin nature of the fluoropolymer coating and the solvents normally used the coating dries extremely quickly.

Find out how we can help you with your ultra-thin hydrophobic coatings now.

Contact us to discuss your needs and let us explain how hydrophobic coatings could work for you.

Contact us now.

0
  • Your current order total is £0.00 β€” you must have an order with a minimum of £75.00 to place your order.
0
Your Cart
Your cart is empty
  • Your current order total is £0.00 β€” you must have an order with a minimum of £75.00 to place your order.
Calculate Shipping
  • Your current order total is £0.00 β€” you must have an order with a minimum of £75.00 to place your order.

Conformal Coating UK

Conformal Coating UK
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.