

Conformal Coating Defect Capillary (Wicking)

Summary

Capillary flow (wicking) occurs when conformal coating is drawn away from target areas and pulled into gaps, underneath components or leads, or into interfaces. The result is a patchy, uneven finish with thin or bare regions that can compromise protection and reliability.

Definitions

What is capillary flow / wicking in Conformal Coating?

- Definition: Coating is drawn into gaps/interfaces (e.g., under component bodies) and away from open surfaces, leaving patchy coverage.
- Main issue: Bare/thin regions reduce insulation resistance and increase moisture ingress risk, especially around fine-pitch and components that are not underfilled.

Root Causes

- Low viscosity / high wetting material coating readily flows into micro-gaps and interfaces.
- High volume films excessive deposit re-distributes before solvent flash-off.
- Change in surface energy across PCB or contamination preferential wetting around components rather than across laminate.
- High coating surface tension relative to substrate finish and geometry.
- Geometry & orientation narrow gaps, capillary channels, and vertical features pulling on the film.

Prevention / Best Practices

- Increase effective viscosity higher-viscosity mix or staged passes with flash-off.
- Reduce film build lighter coats; avoid pooling around component bodies and leads.
- Improve cleanliness raise surface energy via validated clean / rinse / dry cycles.
- Match chemistry select coatings with suitable flow / level properties for geometry (solvent-based often easier to tune).

- Board orientation & fixturing tilt to discourage draw into gaps; add edge dams / masking where practical.
- Thermal conditioning controlled pre-warm and flash to shorten capillary dwell time before cure.
- Selective application tweaks reduce flow rate and pass overlap near capillary-prone features.

Troubleshooting & Diagnosis

- UV/white-light inspection map thin / bare zones around components and along gap lines.
- Thickness checks coupons and on-board features to confirm under-build around edges / leads.
- Viscosity/solids monitoring restore target windows; check for solvent loss.
- Application recipe review head type, distance, pressure / flow, overlap strategy.
- Orientation trials A/B test tilt / fixture changes and flash intervals to suppress wicking.
- Masking aids temporary dams / latex seals near problematic gaps.

Related Defects (Links)

- Pinholes, Bubbles & Foam
- Orange Peel
- De-wetting
- Delamination
- Cracking
- Corrosion & Ionic Contamination
- Capillary / Wicking Around Components

Training & Services (SCH)

SCH offers conformal coating training that goes beyond theory—recognising and preventing pinholes, bubbles, foam, orange peel, de-wetting, delamination, and cracking. We cover process analysis, troubleshooting, materials, and application methods.

Why Choose SCH Services?

Partnering with SCH Services means more than just outsourcing — you gain a complete, integrated platform for Conformal Coating, Parylene & ProShieldESD Solutions, alongside equipment, materials, and training, all backed by decades of hands-on expertise.

- 25+ Years of Expertise Specialists in coating technologies trusted worldwide.
- K End-to-End Support Guidance on coating selection, masking, inspection, and ProShieldESD integration.
- Scalable Solutions From prototype to high-volume production.
- Global Reach Support across Europe, North America, and Asia.
- ✓ Proven Reliability Built on quality, consistency, and customer satisfaction.